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Abstract
We suggest a generalized procedure to obtain exactly solvable position-
dependent mass Hamiltonians in one dimension. The second-order Casimir
invariant of the regular representation of a non-compact semi-simple Lie group
G, the spectral properties of which are well known, is used to introduce exactly
solvable Hamiltonians. A brief description of the procedure is presented and
its application to quantum systems associated with SL(2, R) is detailed.

PACS numbers: 02.20.Sv, 03.65.Fd, 03.65.−w, 03.65.Ge

1. Introduction

In recent years, quantum-mechanical systems with a position-dependent mass have gained
renewed interest owing to the relation to effective-mass approximation in condensed matter
physics [1–3]. They are very useful in the study of electronic properties of semiconductors
[4], quantum dots [5], compositionally graded crystals [6], etc. The position-dependent
mass concept also appears in the energy-density functional approach to quantum many-body
systems, such as nuclei [7], quantum liquids [8], metal clusters [9], 3He clusters [10], etc.

These applications have stimulated the search for exactly solvable Hamiltonians with a
position-dependent mass. A number of authors have studied the position-dependent mass
Schrödinger equation within the framework of super-symmetric quantum mechanics [11–15],
the point-canonical transformation approach [16–19], Lie algebraic methods [20–23], etc.

In this paper, we provide a generalized procedure to obtain exactly solvable position-
dependent mass Hamiltonians related to semi-simple Lie groups G. The wavefunctions of
such Hamiltonians are given in terms of matrix elements of the underlying Lie group. The
procedure is illustrated by explicit application to SL(2, R).

1751-8113/09/445210+12$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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2. Main idea

Let us start the discussion with the fact that, for a position-dependent mass M(x), since M(x)

and the momentum operator P̂ = h̄
i

∂
∂x

no longer commute, there are many possibilities for
the kinetic Hamiltonian [24–28]. All of them are special cases of the most general von Roos
form [29] given by

Hkin = 1
4 (MaP̂ ◦ MbP̂ ◦ Mc + McP̂ ◦ MbP̂ ◦ Ma), (1)

with a + b + c = −1, where ◦ denotes composition of operators. Henceforth, we will set
M(x) = m0m(x), where m(x) is a dimensionless mass, and adopt units such that h̄ =
2m0 = 1.

In a paper [30], Levi-Leblond proposed a way to solve the ambiguity in the definition of
Hkin. It has been shown that invariance under instantaneous Galilean transformations leads
without ambiguity to a BenDaniel–Duke [24] form (corresponding to a = c = 0, b = −1)
for the Hamiltonian

H = − d

dx
◦ 1

m(x)

d

dx
+ V (x)

= − 1

m(x)

d2

dx2
+

ṁ(x)

m2(x)

d

dx
+ V (x), (2)

where dot represents derivative with respect to x, i.e., ṁ = dm
dx

. Here we shall work with this
form of the Hamiltonian. The corresponding Schrödinger equation is given by[

− 1

m(x)

d2

dx2
+

ṁ(x)

m2(x)

d

dx
+ V (x)

]
ψ(x) = Eψ(x). (3)

A key concept in group-theoretic approach is that the Hamiltonian H under consideration
is expressed in terms of infinitesimal operators of some Lie group G. We point out that in
this study one must have either an irreducible representation of G or a reducible one whose
irreducible content is known. From the beginning we must stress that we deal with systems
whose Hamiltonians H can be written as

H = (α1C + α2)|H , (4)

where C a second-order Casimir operator C of a reducible representation of non-compact
group G. Here |H denotes the restriction to a subspace H of carrier space of the representation.

The Schrödinger energy eigenvalue equation for such Hamiltonians is essentially the
condition imposed on the carrier space of G to be irreducible. However, it has to be remarked
that, even though the knowledge of the irreducible content of the representation allows one to
obtain the whole spectrum of the Hamiltonian, generally it is not enough to obtain solutions
of Schrödinger equation algebraically. Therefore, we find it expedient to use representations
of groups G by shift operators on spaces of functions on G itself. The reason for this is that
the eigenfunctions of the corresponding Hamiltonians can be given in terms of the matrix
elements of G.

Let L∞(G) be the space of infinitely differentiable functions on the group G. A simple
verification shows that the formula

T (g0)f (g) =
[
h(gg0)

h(g)

] 1
2

f (gg0), g0 ∈ G, (5)

where

h(g) � 0 (6)
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gives a representation of G. The representation T on L2(G, dμ) is unitary with respect to the
inner product

(f, f ′) =
∫

f ∗(g)f ′(g) dμ,

where dμ = h(g) dg and dg is an invariant measure on G. In the case of h(g) = 1, the
representation operator, call it Ť , has the simple form

Ť (g0)f̌ (g) = f̌ (gg0). (7)

It is called the regular representation of G [31, 32]. This representation is decomposed into
unitary irreducible representations (UIRs) of the group G. It should be noted that [33], in the
case of non-compact group G, the discrete series representations appear in the decomposition
if and only if G has the same rank as its maximal compact subgroup.

The representation Ť , of course, is equivalent to T. The mapping W which realizes the
equivalence is given by

W : f → f̌ = h1/2f. (8)

(Although equivalence from the point of view of mathematics is not equivalence from the
point of view of physics.) The next step in the program is the calculation of the second-order
Casimir operators of T.

Let e1, e2, . . . , en form a basis of the Lie algebra g of G with commutation relations

[ei, ej ] = ck
ij ek, i, j, k = 1, 2, . . . , n,

where ck
ij are the structure constants, and let �k be one-parameter subgroups generated by

ek, k = 1, 2, . . . , n. Then the infinitesimal operators Jk corresponding to ek are defined by

Jk = −i
d

dτ
T (ωk(τ ))

∣∣∣∣
τ=0

, ωk ∈ �k. (9)

They satisfy the commutation relations

[Ji, Jj ] = ck
ij Jk. (10)

Moreover, a second-order Casimir operator C of T is given by

C = gikJiJk (11)

where

gik = cl
ij c

j

kl

Thus, in order to find the second-order Casimir operator of T, it is sufficient to know
infinitesimal operators Jk.

Before calculating infinitesimal operators, we need to know a parametrization of arbitrary
elements of G. Many parametrizations of the general element g of G are possible. The most
useful ones would appear to arise from factorization of group elements into products of three
factors

g = bad, (12)

each factor constituting a subgroup of G. (It should be noted that different factorizations of
G lead to different reductions of T.) We shall assume that the general element g depends on
position coordinates of particles only through the middle factor a. Once the parametrization
of arbitrary elements is given, it is almost straightforward to get an explicit form of the
infinitesimal operators. Next one can extract a family of position-dependent mass Hamiltonians
from the Casimir operator as follows.

3
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Let H be a subspace of functions f (g) such that

f (bgd) = ur(b)ws(d)f (g), (13)

with fixed r and s, where ur and ws are the UIR matrix elements of subgroups consisting of
the matrices b and d, respectively. Then any function f of this subspace is of the form

f (g) = ur(b)ws(d)f (a), a ∈ A. (14)

We now require f (a) to be square-integrable functions. Moreover we shall assume that h in
(5) depends on position coordinates alone. Then the Casimir operator restricted to H becomes
a differential operator in position coordinates alone, yielding a family of position-dependent
mass Hamiltonians by appropriate choice of h.

3. A case study for SL(2, R)

To gain a better understanding of our approach, we illustrate it for Hamiltonians related to
SL(2, R). In order to fix notation and terminology we start with a brief description of UIRs
of the group SL(2, R). For more detailed treatment of SL(2, R) we refer to [32].

SL(2, R) is the group of all 2 × 2, real, unimodular matrices. Its Lie algebra sl(2, R)

consists of traceless real 2 × 2 matrices. We choose the basis in sl(2, R) as

e1 =
(−1 0

0 1

)
, e2 =

(
0 1
1 0

)
, e3 =

(
0 −1
1 0

)
. (15)

The commutation relations for these matrices are

[e1, e2] = e3, [e2, e3] = −e1, [e3, e1] = −e2. (16)

According to this, we choose three one-parameter subgroups �1,�2 and �3 generated by
e1, e2 and e3, respectively. They consist of the matrices of the form

ω1 =
(

e−τ/2 0
0 eτ/2

)
, ω2 =

(
cosh τ

2 sinh τ
2

sinh τ
2 cosh τ

2

)
, ω3 =

(
cos τ

2 −sin τ
2

sin τ
2 cos τ

2

)
, (17)

respectively.
The unitary irreducible representations of SL(2, R) are known to form three series:

principal, supplementary and discrete. (It should be noted that rank SL(2, R) = rank SO(2) =
1.) The Casimir operator

C = J 2
1 + J 2

2 − J 2
3 (18)

for all such UIRs is identically a multiple of the unit

C = −j (j + 1)I,

where J1, J2 and J3 are the Hermitian operators corresponding to e1, e2, e3, respectively. J3 is
elliptic, J1, J2 are hyperbolic. The representations specified by j and −1 − j are equivalent.

When we use a SO(2) basis, J3 will be the preferred generator. We now give the spectrum
of j corresponding to UIRs and eigenvalues n of the operator J3 in each such representation:

(i) principal series Tiρ− 1
2

j = − 1
2 + iρ, 0 � ρ < ∞, m = 0,±1,±2, . . . , or m = ± 1

2 ,± 3
2 ,± 5

2 , . . . ,

(19)

(ii) complementary series Tτ

j = τ, −1 < τ < − 1
2 , m = 0,±1,±2, . . . , (20)

4
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(iii) positive discrete series T +
j

j = − 1
2 ,−1,− 3

2 ,−2, . . . , n = −j,−j + 1,−j + 2, . . . , (21)

(iv) negative discrete series T −
j

j = − 1
2 ,−1,− 3

2 ,−2, . . . , n = j, j − 1, j − 2, . . . . (22)

Two other subgroup bases are SO(1, 1) and E(1) bases in which, for example, the operators
J1 and N+ = (J2 − J3) /2 are diagonal, respectively. It is worth pointing out that eigenvalues
ν and λ of the operators J1 and N+ are real numbers in each UIR.

We are now prepared to obtain the explicit form of Hamiltonians related to SL(2, R) in
the sense that relation (4) holds.

(i) Cartan decomposition
Here we consider a parametrization of SL(2, R) group, which is consistent with Cartan
decomposition [32]

g(ϕ, t, θ) =
(

cos ϕ/2 sin ϕ/2
−sin ϕ/2 cos ϕ/2

)(
et/2 0
0 e−t/2

) (
cos θ/2 sin θ/2
−sin θ/2 cos θ/2

)
.

One can represent almost every element g ∈ SL(2, R) in this form by imposing upon
ϕ, t, θ the restrictions

0 � ϕ < 2π, 0 � t < ∞, −2π � θ < 2π.

Moreover, the correspondence (ϕ, t, θ) → g (ϕ, t, θ) is one-to-one. Now we require the
parameter t to be a differentiable function of position x. Moreover we shall assume that
h in (5) depends on x alone. Then it follows from equations (9) that

iJ1 = −cos θ

ṫ

∂

∂x
− sin θ

sinh t

∂

∂ϕ
+ sin θ coth t

∂

∂θ
− ḣ

2hṫ
cos θ,

iJ2 = sin θ

ṫ

∂

∂x
− cos θ

sinh t

∂

∂ϕ
+ cos θ coth t

∂

∂θ
+

ḣ

2hṫ
sin θ, (23)

iJ3 = − ∂

∂θ
.

An invariant measure dg in this parametrization is given by dg = ṫ sinh t dx dϕ dθ . If we
compute the Casimir operator C for this parametrization, it becomes

C = − 1

ṫ2

∂2

∂x2
− 1

ṫ2

(
ḣ

h
− ẗ

ṫ
+ ṫ coth t

)
∂

∂x
− 1

sinh2 t

(
∂2

∂ϕ2
− 2 cosh t

∂2

∂ϕ∂θ
+

∂2

∂θ2

)

+
ḣ

2hṫ2

(
ḣ

2h
− ḧ

ḣ
+

ẗ

ṫ
− ṫ coth t

)
. (24)

Let Hnk be a subspace of L2 (SL(2, R), dμ) consisting of functions f (g) such that

f (g) = e−i(nϕ+kθ)f (t), (25)

where n and k are simultaneously integer or half-integer. (We note that e−inϕ (e−ikθ ) is
a UIR of the SO(2) subgroup.) Then the Casimir operator restricted to Hnk , call it Cnk,
becomes a differential operator in x alone

Cnk = − 1

ṫ2

d2

dx2
− 1

ṫ2

(
ḣ

h
− ẗ

ṫ
+ ṫ coth t

)
d

dx
+

n2 + k2 − 2nk cosh t

sinh2 t

+
ḣ

2hṫ2

(
ḣ

2h
− ḧ

ḣ
+

ẗ

ṫ
− ṫ coth t

)
. (26)

5
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As we want to get a Hamiltonian in the form (2), we require

h = 1

ṫ sinh t
. (27)

Then it can be shown that the position-dependent mass Hamiltonian (2) with solvable
potentials

V (x) = (n − k)2 − 1
4

sinh2 t
2

− (n + k)2 − 1
4

cosh2 t
2

+
˙ẗ

2ṫ3
− 5

4

ẗ2

ṫ4
(28)

is related to Casimir invariant C as

H = (
C − 1

4

)∣∣
Hnk

(29)

with

m(x) = ṫ2(x). (30)

Moreover, it is well known that the functions f̌ (t) such that∫ ∞

0
|f̌ (t)|2 sinh t dt < ∞ (31)

have the expansion [32]

f̌ (t) =
∫ ∞

0
c(ρ)t

− 1
2 +iρ

nk (g(0, t, 0)) tanh π (ρ + iε) dρ

+
−N∑

j=−1−ε

(
−j − 1

2

)
cj t

j,±
nk (g(0, t, 0))

with Fourier coefficients c(ρ) and cj, where N = min (|n| , |k|) for nk > 0 (the sum
over j is absent for nk � 0), ε = 0, if n and k are integer, and ε = 1

2 , if n and k are

half-integer. Here t
− 1

2 +iρ
nk (g) and t

j,±
nk (g) are matrix elements of continuous and discrete

series representations of SL(2, R) in SO(2) basis, respectively. Hence, the potential
(28) has scattering states for any (simultaneously integer or half-integer) n, k, whereas it
possesses bound states if nk > 0.

The energy spectrum can now be obtained easily if we note that the eigenvalue of C
is −j (j + 1). Thus we have

E = − (
j + 1

2

)2
(32)

where j = − 1
2 + iρ for the scattering states, whereas

j = −3

2
,−5

2
, . . . ,−N (if k and n are half-integer and nk > 0) (33)

or

j = −1,−2, . . . ,−N (if k and n are integer and nk > 0) (34)

for the bound states. We may also use the UIR matrix elements of SL(2, R) in SO (2)

basis [31] to define the wavefunctions of (28). In particular, for bound state wavefunctions
we have

ψ(x) ∝ (
ṫ sinh t

)1/2
(

cosh
t

2

)2j (
tanh

t

2

)k−n

×F

(
−j + k,−j − n; k − n + 1; tanh2 t

2

)
(35)

6
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where n � k � j < − 1
2 . (If k � n � j < − 1

2 one has to replace n by k and k by n.) It
should be noted that due to the symmetry n → −n, k → −k in the potentials (28), both
the positive and negative series describe the same bound states.

What is still missing though is a group-theoretical derivation of the scattering matrix.
It can be shown that S-matrix of such quantum-mechanical systems can also be derived
via intertwining operators of underlying Lie group [34]. This subject will be treated in a
later publication.

The mass and potential functions depend crucially on t (x). So to obtain specific mass
and potential functions it is necessary to make a choice of the function t (x). For example,
to obtain the mass function

m(x) =
(

1 +
δ

1 + x2

)2

(36)

used in [12] we have to set for t (x) the following form:

t (x) = x + δ arctan x, 0 � x < ∞, δ > 0. (37)

With this choice of t (x), potential functions are found to be

V (x) = (n − k)2 − 1
4

sinh2 t
2

− (n + k)2 − 1
4

cosh2 t
2

+
δ[3x4 + 2 (1 − δ) x2 − 1 − δ]

(1 + δ + x2)4
. (38)

From the discussion of the preceding section, it should be clear that other choices of
function t (x) can be made which satisfy the condition

ṫ > 0, 0 � t < ∞
(see equations (6) and (27)). In other words, t (x) is a strictly increasing function and its
range is [0,∞). We can take for instance

t (x) = ln

(
ex + δ

1 + δ

)
, 0 � x < ∞, δ > 0, (39)

which gives

m(x) = 1/(1 + δ e−x)2

Another acceptable form for t (x) is

t (x) = 1√
δ

ln
(√

δx +
√

1 + δx2
)
, 0 � x < ∞, δ > 0, (40)

with [30]

m(x) = 1/(1 + δx2).

It can also be seen that

lim
δ→0

t (x) = x and lim
δ→0

m(x) = 1

and as a consequence, the hyperbolic Pőschl–Teller potential appears as the δ → 0 limit
of these potentials.

It is also worth pointing out that the trigonometric form of potential (28) can be
obtained choosing G as SU(2). In this case, the Cartan decomposition is

g (ϕ, t, θ) =
(

eiϕ/2 0
0 e−iϕ/2

)(
cos t/2 i sin t/2
i sin t/2 cos t/2

)(
eiθ/2 0

0 e−iθ/2

)
, g ∈ SU(2)

7
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where 0 � ϕ < 2π, 0 � t < π, −2π � θ < 2π . Now we choose three one-parameter
subgroups �1,�2,�3 in SU(2), consisting of the matrices

ω1 =
(

cos τ/2 i sin τ/2
i sin τ/2 cos τ/2

)
, ω2 =

(
cos τ/2 −sin τ/2
sin τ/2 cos τ/2

)
, ω3 =

(
eiτ/2 0

0 eiτ/2

)
,

respectively. Then, it is almost straightforward to get an explicit form of the Casimir
operator C = J 2

1 + J 2
2 + J 2

3 . Next by arguments very similar to those used in arriving at
(28) we can show that the Hamiltonian (2) with mass m = ṫ2(x) and potential

V (x) = (n − k)2 − 1
4

sin2 t
2

+
(n + k)2 − 1

4

cos2 t
2

+
˙ẗ

2ṫ3
− 5

4

ẗ2

ṫ4
(41)

is related to SU(2) in the sense that relation

H = (
C + 1

4

)∣∣
Hnk

(42)

holds. It should be noted that the function t (x) is strictly increasing on the interval (0, xδ)

and its range is (0, π), where xδ is the solution of the equation t (xδ) = π . For instance,
xδ = ln [eπ + δ (eπ − 1)] if m(x) = 1/(1 + δ e−x)2.

Moreover, it is well known that the functions f̌ (t) such that∫ π

0
|f̌ (t)|2 sin t dt < ∞ (43)

have the expansion [32]

f̌ (t) =
∞∑

l=K

αlt
l
nk(g(0, t, 0))

with Fourier coefficients cl, where K = max (|n| , |k|) and t lnk(g) are matrix elements
of UIRs of SU(2). (It should be noted that the Casimir operator for UIRs of SU(2) is
identically a multiple of the unit C = l (l + 1)) Hence, the potential (41) has bound states
only, with energy

E =
(

l +
1

2

)2

, l = K,K + 1,K + 2, . . . .

Moreover, the UIRs matrix elements of SU(2) provide the wavefunctions of (41)

ψ(x) ∝ (ṫ sin t)1/2

(
sin

t

2

)k−n (
cos

t

2

)k+n

×F

(
l + k + 1,−l + k; k − n + 1; sin2 t

2

)
, (44)

where n � k. (If k � n one has to replace n and k by −n and −k, respectively.)
(ii) The Iwasawa decomposition. Now, we want to use the Iwasawa decomposition

g (ϕ, t, u) =
(

cos ϕ/2 sin ϕ/2
−sin ϕ/2 cos ϕ/2

) (
et/2 0
0 e−t/2

)(
1 u

0 1

)
, (45)

where 0 � ϕ < 2π, −∞ < t < ∞,−∞ < u < ∞. We demand t to be a differentiable
function of position x. Then

iJ1 = −1

ṫ

∂

∂x
+ u

∂

∂u
− ḣ

2hṫ
,

iJ2 = u

ṫ

∂

∂x
− e−t ∂

∂ϕ
+ (1 − u2 + e−2t )

∂

∂u
+

ḣ

2hṫ
u, (46)

iJ3 = u

ṫ

∂

∂x
− e−t ∂

∂ϕ
− (1 + u2 − e−2t )

∂

∂u
+

ḣ

2hṫ
u

8
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and dg = et ṫ dx du dϕ. If we compute the Casimir operator C, it becomes

C = − 1

ṫ2

∂2

∂x2
− 1

ṫ2

(
ḣ

h
− ẗ

ṫ
+ ṫ

)
∂

∂x
+ 2e−t ∂2

∂u∂ϕ
− e−2t ∂2

∂u2
+

ḣ

2hṫ2

(
ḣ

2h
− ḧ

ḣ
+

ẗ

ṫ
− ṫ

)
.

(47)

Let us denote by Cnλ a restriction of C on a subspace Hnλ of L∞(G) consisting of
functions f (g) such that

f (g) = e−i(nϕ+λu)f (t),

where e−inϕ and e−iλu are UIRs of SO (2) and E (1), respectively. Moreover, we require
that the functions f (t) are square-integrable with respect to h (t) etdt, i.e.,∫ ∞

0
|f (t)|2 h (t) etdt < ∞. (48)

Then, it turns out that

Cnλ = − 1

ṫ2

d2

dx2
− 1

ṫ2

(
ḣ

h
− ẗ

ṫ
+ ṫ

)
d

dx
− 2λn e−t + λ2 e−2t +

ḣ

2hṫ2

(
ḣ

2h
− ḧ

ḣ
+

ẗ

ṫ
− ṫ

)
.

(49)

Now, we require

h = 1

ṫet
. (50)

Then, it is straightforward to show that the Hamiltonian (2) with mass m(x) = ṫ2(x) and
potential

V (x) = λ2 e−2t − 2λn e−t +
˙ẗ

2ṫ3
− 5

4

ẗ2

ṫ4
(51)

is related to the Casimir operator (49) as

H = (
C − 1

4

)∣∣
Hnλ

. (52)

Hence, the energy is also given by (32), but now j = − 3
2 ,− 5

2 , . . . ,− |n| (if n is half-
integer) or j = −1,−2, . . . ,− |n| (if n is integer) for the bound states. Moreover, the
SO(2) ↔ E(1) mixed basis matrix elements [32, 35] provide the bound and scattering
state wavefunctions of (51). For instance, the bound states wavefunctions are given by

ψ(x) ∝ (
ṫet

)1/2
exp

(
−λe−t

2

)
L

−2j−1
n+j (λ2 e−t ), (53)

with n > −j, where Lk
n are the Laguerre polynomials. Finally, we note that since

the range of the function t (x) in (2) is (−∞, +∞) the choice of t (x) as in (39) is not
acceptable. But we can take t (x) as in (37) or as in (40), where x runs through the domain
(−∞, +∞).

(iii) Generalized Cartan decomposition. Let us adopt the following parametrization for
SL(2, R):

g (u, t, ϕ) =
(

eu/2 0
0 e−u/2

)(
cosh t/2 sinh t/2
sinh t/2 cosh t/2

) (
cos ϕ/2 sin ϕ/2
−sin ϕ/2 cos ϕ/2

)
,

9
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where −∞ < u < ∞, −∞ < t < ∞, 0 � ϕ < 2π . As usual we require t to be a
differentiable function of x and as a consequence we have

iJ1 = sin ϕ

ṫ

∂

∂x
− cos ϕ

cosh t

∂

∂u
+ tanh t cos ϕ

∂

∂ϕ
+

ḣ

2hṫ
sin ϕ,

iJ2 = cos ϕ

ṫ

∂

∂x
+

sin ϕ

cosh t

∂

∂u
− tanh t sin ϕ

∂

∂ϕ
+

ḣ

2hṫ
cos ϕ, (54)

iJ3 = − ∂

∂ϕ
,

while dg = ṫ cosh t dx dudϕ. Then the restriction of the Casimir operator

C = − 1

ṫ2

∂2

∂x2
− 1

ṫ2

(
ḣ

h
− ẗ

ṫ
+ ṫ tanh t

)
∂

∂x
− 1

cosh2 t

(
∂2

∂u2
− 2 sinh t

∂2

∂u∂ϕ
− ∂2

∂ϕ2

)

+
ḣ

2hṫ2

(
ḣ

2h
− ḧ

ḣ
+

ẗ

ṫ
− ṫ tanh t

)
(55)

to a subspace Hνn of L∞ (SL(2, R)) consisting of functions f (g) such that

f (g) = e−i(νu+nϕ)f (t) (56)

where e−iνu and e−inϕ are UIRs of SO (1, 1) and SO (2), respectively, yields the
differential operator Cνn

Cνn = − 1

ṫ2

d2

dx2
− 1

ṫ2

(
ḣ

h
− ẗ

ṫ
+ ṫ tanh t

)
d

dx
+

ν2 − n2 − 2νn sinh t

cosh2 t

+
ḣ

2hṫ2

(
ḣ

2h
− ḧ

ḣ
+

ẗ

ṫ
− ṫ tanh t

)
. (57)

In order to put the operator Cνn in the form (2), we choose

h = 1

ṫ cosh t
(58)

and as a consequence, we come to the Hamiltonian (2) with potential

V (x) = (ν2 − n2 + 1/4) sech2t − 2νn sech2t tanh t +
˙ẗ

2ṫ3
− 5

4

ẗ2

ṫ4
(59)

related to C (55) as in (29). Therefore the energy is also given by (32), with
j = − 3

2 ,− 5
2 , . . . ,− |n| (if n is half-integer) or j = −1,−2, . . . ,− |n| (if n is integer) for

the bound states. Moreover, the wavefunctions are provided by the SO(1, 1) ←→ SO(2)

mixed basis matrix elements [32, 35]. In particular, the bound-state wavefunctions are
given by

ψ(x) ∝ (ṫ cosh t)1/2 (cosh t)−n (1 − i sinh t)iν

×F
(−n − j, 1 + j − n; 1 − n + iν; 1

2 (1 − i sinh t)
)

(60)

with n > −j .
Finally, we note that three other subgroup factorizations yield Hamiltonians

possessing a purely continuous spectrum. The scattering states of these Hamiltonians
can be related to the principal series representations of SL(2, R) in non-compact bases.
For instance, the Gauss decomposition

g =
(

1 0
v 1

) (
et/2 0
0 e−t/2

) (
1 u

0 1

)
(61)

10
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where −∞ < v < ∞,−∞ < t < ∞,−∞ < u < ∞, gives

V = μλ e−t +
˙ẗ

2ṫ3
− 5

4

ẗ2

ṫ4
. (62)

The scattering state wavefunctions for (62) are provided by the matrix element of principal
series representations of SL(2, R) in E(1) basis [32, 35].

4. Conclusion

We presented in this paper a technique to obtain exactly solvable position-dependent mass
Hamiltonians within the framework of group theory. Our point of departure is the regular
representation of semi-simple Lie groups G. The key idea which allows us to solve the problem
is to relate a second-order Casimir invariant of the regular representation with position-
dependent mass Hamiltonians. Then the knowledge of harmonic analysis on semi-simple Lie
groups G can be used to determine the spectrum and wavefunctions of related Hamiltonians
with a position-dependent mass. In particular, the procedure has been applied to obtain
solutions of one-body Hamiltonians related to SL(2, R) and SU(2). It is also clear from the
procedure that exactly solvable many-body Hamiltonians related to higher-rank Lie groups
can also be constructed. We hope to discuss some of these applications in a future publication.
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[17] Gönül B, Özer O, Gönül B and Üzgün F 2002 Mod. Phys. Lett. A 17 2453
[18] Yu J and Dong S H 2004 Phys. Lett. A 325 194
[19] Bagchi B, Gorain P, Quesne C and Roychoudhury R 2005 Europhys. Lett. 72 155
[20] Roy B and Roy P 2002 J. Phys. A: Math. Gen. 35 3961
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